Showing posts with label Transportation. Show all posts
Showing posts with label Transportation. Show all posts

Tuesday, March 5, 2013

Where Have All the BTUs Gone?

I have been away for a few weeks at conferences and have chatted to all sorts of different experts about energy issues. However, during my time away I have been nagged by an important open question. In my last post, I stated that I don't consider the 25% renewables by 2025 goal to be an achievable one, and I presented data that showed that whatever progress we have made over the past few years has been as a result of energy usage reductions rather than increased amounts of renewable energy. Regardless of my viewpoint on the achievability of the goal, these energy savings are great as I believe we can accomplish more through energy savings than we can from new renewable energy sources. Nevertheless it is critical to understand what we are doing to save energy so we can do more of the same. So to paraphrase the words of the old Pete Seeger song "Where Have all the Flowers Gone," I want to know "Where Have All the BTU's Gone?" 

In-state energy use in NH has decreased by 9% since 2005 - see my last post. Some possible reasons include: 
 
  • The Great Recession of 2008/2009 resulted in lower economic output and therefore less energy consumption.
  • Increased fuel costs have caused us to moderate our energy-consuming habits.
  • Through various State, Federal and privately funded energy savings programs, we are becoming more energy efficient, and we are able to accomplish more with less energy input.
  • We have a smaller population and therefore fewer of us in NH are using energy.

Let's dispense with the last point first. From 2000 to 2010, the NH population grew from 1.24 million to 1.32 million – a 6% increase. So not only are we using less energy – we are using less energy while the State population is growing. Because census data are only collected on a per decade basis, it is useful to look at energy usage on a similar basis, so let's take a look at energy consumption since 2000, shown in the chart below.




The blue bars show that in the first half of the decade (except for the post 9-11 economic downturn in 2001), there was a continuation of our decades' long run up of energy consumption. In fact, from 1990 to 2000 our energy consumption increased 16%. We reached a peak of in-state consumption of 331 trillion BTU in 2004. Since then energy consumption has turned around and had dropped off 11% by 2010. I have overlaid data for the NH Gross Domestic Product (GDP) as the red line, and, except for the post 9-11 slow down in 2001 and a dip for the 2008/2009 Great Recession, the decade saw a 14% increase in GDP. So our decrease in energy consumption preceded the Great Recession by a number of years. There is no doubt the recession did encourage further energy savings as we, like Jimmy Carter, turned down the thermostats, took to wearing more sweaters and sat closer to the fire.

Dividing energy consumption by GDP dollars yields a number called GDP energy intensity, which is a measure of the amount of energy, in BTUs, it takes to produce a dollar of GDP output. In the table below you can see our energy intensity for some key years and how it has changed since 1990.


Our decrease in energy intensity is clear and this mirrors a long-term decrease for the whole US. In fact, in NH our energy intensity is typically 30% lower than the USA average. Generally speaking, our energy intensity has decreased and we are able to produce more GDP output with smaller energy outlays. This comes from an increasing awareness of the energy components of our industrial output as well as our move away from energy-intensive industries such as mining, steelmaking and general heavy manufacturing.

Another energy intensity measure that is often calculated is energy use per person. These numbers for NH and the USA are shown below.


 

Here we see an increase in per capita consumption to 2004 and then a 12.5% drop off from 2004 to 2010. Again our per capita consumption is, on average, about 30% lower than that of the US total. In fact, on a state basis, NH is way down the list in per capita energy use – we are at position 44. Rhode Island and New York, which have the lowest use of energy per person, have per capita values 15% lower than ours. On the other hand, states like Alaska and Wyoming have usages three times greater than ours.

So our energy usage has declined and is lower than the US average, but it still begs the question – "Why?". To get a better view of the decrease, I have looked at the four main components of our in-state energy consumption, viz., transportation, commercial, residential and industrial use and how they have changed since 2004. I have plotted the data for 2004 and 2010 for each of the sectors in the chart below.
 
 
 
In 2004 our energy usage was 331 trillion BTU and in 2010 it was 296 trillion BTU – a 35 trillion BTU decrease. This is an 11% decrease in our in-state energy consumption. Transportation usage only decreased by 2%, commercial use declined by 12%, residential usage decreased 10%, and industrial usage dropped by 27%.

The pie chart below shows which sectors contributed the most to the 35 trillion BTUs savings. Most of the decrease came from the industrial sector which contributed 40% of the savings, next was the commercial sector which provided 33% of the savings, followed by residences with 20% and a small portion by reduced transportation usage. I note that another blogger on NH issues, Brian Gottlob at Trendlines, has done a similar analysis. (In fact, I subscribe to the Trendlines Blog and I always find his data-based take on NH economic issues interesting. I encourage you to do the same.)
 


So where does the impressive decrease in industrial energy consumption come from? Contrary to what many folks think, this is not due to erosion of our manufacturing base. In fact, NH's manufacturing base has held up well over the past decade. On average, we get 15% of our state GDP from manufacturing, compared to 12% for a US average and based on some recent data we are even seeing an increase. What is different is that our manufacturing is changing – it is no longer the heavy manufacturing of years gone by, and, based on discussions with manufacturers, I know that energy is now a top-five expense in most manufacturing companies. Companies have invested in many projects to reduce energy costs and, as a result, manufacturing is now more energy efficient than ever before.

 
To get a better sense of the industrial energy usage in the state, I have extracted the energy used in industrial activities as well as the industrial GDP component to calculate the industrial energy intensity. This data are shown in the table below and I have included the data for the US as a whole as well. 



The key point to note is that industrial energy intensity has decreased over the past decade for both NH and the US, however there was an impressive decrease in NH industrial intensity from 2004 to 2010. This was an almost 50% significant decline in the State's industrial intensity since 2004. I don't have a ready explanation for this decrease but it is surprising and warrants further review and continued tracking.

As usual, I have flooded you with data, charts and information and there is a lot more I could ply you with. At this time I have to leave you with only a partial understanding of why we have been able to reduce energy usage in New Hampshire. There is more to this picture and I too need to better understand why we have been able to decrease energy usage in New Hampshire since 2004 even though economic output, measured by GDP, has increased. I plan to do some more research and I will share my findings with you over the course of the next few months. Nevertheless, this is what we know so far:
  • Our energy intensity on a per capita and a per GDP dollar basis has decreased steadily and our numbers are amongst the lowest in the USA.
  • Most of our energy savings have come from reductions in industry energy usage and from commercial applications.
  • The industrial energy intensity has been reduced by almost 50% since 2004.

What do you know and what can you contribute to this discussion? Feel free to leave a comment or send me an email.

Until next time, remember to turn off those lights when you leave the room.

Mike Mooiman
Franklin Pierce University
mooimanm@franklinpierce.edu
3/5/2013














Sunday, January 20, 2013

Another View of Statewide Energy Flows in New Hampshire

In this post I want to look at New Hampshire energy flows in a different way, without resorting, as I have in previous posts, to column charts and criss-crossing cobwebs of arrows. Instead, I would like to introduce the concept of Sankey, or flow, diagrams which are often used in the energy industry. In these diagrams the magnitude of the flow of energy is indicated by the width of the arrow. These diagrams were first used in the energy field by an Irish engineer and captain in the British army, Matthew Henry Phineas Riall Sankey in 1898 to illustrate energy flows in steam engines. A modern version of a Sankey diagram is shown in the next figure. This figure neatly shows how input energy into a steam engine is lost to smoke, friction and a large portion to the steam condensation step. The condensed water is then recirculated to be heated into steam again, hence the small recirculating flow. Useful energy as forward motion of the steam engine and a small amount going to the alternators is shown as the exiting blue flows.


The great thing about Sankey diagrams is that they are not restricted to only energy flows. They can be applied to quantities of many types. For example, material and cost flows are often depicted. One of the most famous of these flow diagrams is that prepared by the French engineer George Charles Minard in 1869, shown below. This figure illustrates the fate of Napoleon's army in 1812 -1813 as they progressed through their disastrous Russian invasion. The figure shows, by the width of the lines, the fate of the invading army. Napoleon crossed into Russian with 422,000 men and through attrition, minor skirmishes and some great battles he entered a largely abandoned Moscow with about 100,000 men under his command. He then turned back to return to France: on the way back, starvation, battles and incessant harassment by guerilla forces decimated his army to 10,000 survivors. The harsh winter also took its toll on his men - the line graph below the flow diagram shows the decreasing temperatures encountered on the army's return from Moscow. The diminishing width of the flow is a skillful, albeit rather harrowing, representation of what was happening in the army in the field, the prisoners that were taken and the lives that were lost.





But I digress. Let's return to energy flows. The folks at the Lawrence Livermore National Laboratory (LLNL) annually prepare flow diagrams for the
total flow of energy in the US. These diagrams are particularly useful and informative and they appear in energy-related presentations all over the place. In 2011 LLNL prepared individual diagrams for all 50 states based on 2008 data. To the best of my knowledge, they don't update these state diagrams every year like their total US flow diagram. Nevertheless I thought I would share their 2008 diagram for New Hampshire, shown below, with you.

 


Much of this figure shows the same information as my previous analysis, but it does so in a more elegant fashion. Off to the left, you can see the energy inputs to the state. These input energies then flow into transportation, homes, offices, stores and industry and a large part of the flow goes into electricity generation. The width of the lines clearly shows the magnitude of the flows. As with my analysis, it can be seen that electricity produces a lot of waste heat and a relatively small portion, 32% according to LLNL, ends up in electricity that is directed to homes, businesses, factories or exported out of state.


What this diagram includes, which my previous analysis did not, is the recognition that a large fraction of the energy that goes into transportation is lost as waste heat rather than motion. According to the LLNL estimates, only 25% goes into motion. They also recognized that a lot of the heat that goes into warming our homes, businesses and factories is lost due to poor insulation, waste and equipment inefficiencies. Their numbers suggest that 35% of the input energy into homes is lost. For commercial operations they estimate 30% of the energy is lost and losses of 20% are encountered in industrial applications. The diagram then neatly combines all the separate waste energy flows into a single value at the right of the diagram which illustrates the rather sobering fact - that, of the 418 trillion BTU energy supply to NH, 270 trillion BTU, or 65%, is lost as waste heat!

While not as dramatic as the fate of Napoleon's army, this single sobering fact that 65% of our energy input is lost provides the best opportunity for managing our energy needs going forward. Investments in higher efficiency equipment, higher mile-per-gallon vehicles and better insulation for our buildings will all serve to reduce the amount of energy wasted. This will reduce our input requirements. Energy supplies, especially those associated with fossil fuels, can be reduced and better managed. In the process we will reduce our carbon emissions as well.

In many respects, this is the most single beneficial thing that you and I can do at present – we can and we must reduce the amount of energy we waste. Yes, alternative energy sources are necessary but, while we are waiting for scientific breakthroughs and large-scale commercial development, we can be taking measures right now to reduce our energy consumption. We as individuals can take action and we can organize to get the organizations we work for to take action. There is lots of help out there. Many companies and non-profits are working in this field and they are making a difference. For example, here in New Hampshire the very focused mission of the Jordan Institute is to reduce energy losses from buildings in the State. They are doing some impressive things to reduce our dependence on fossil fuels. Take a look at their website if you get an opportunity.

We also need to be realistic about these losses. Yes, they are large, but we will never be able to totally eliminate them due to the nature of energy, materials, electricity and the laws of physics. Even so, we are so far away from these physical limits that there is a lot we can do to reduce energy waste.

So there you have it – another way to look at energy flows in the state. Bear in mind that this analysis uses 2008 figures from the Energy Information Administration and does not reflect the rapid switch away from coal that we are presently undergoing. I plan to present an update of the energy flow diagram for NH in a future post but, in the meantime, hopefully I have got you thinking about what you can do avoid energy losses in your home and the building you work in.


Until next time, remember to turn off those lights when you leave the room.


Mike Mooiman
Franklin Pierce University
mooimanm@franklinpierce.edu
1/20/2013




Sunday, January 13, 2013

The New Hampshire Energy Picture – Part 3: What Happens to the Energy that is Supplied to the State?

In my last post we looked at the direct use of energy in the State. We followed the various components of the energy supply into transportation, residential and commercial heating, industrial use and the generation of electricity. However, I also made the point that electricity is not an energy source - it is an energy transfer medium. It is the way we get the energy out of a lump of coal or a nuclear fuel rod so that it can power the coffee maker in our kitchens. I think we can all agree that buckets of coal or enriched uranium in the kitchen do not work well in powering the toaster and microwave. Therefore, if we are to determine the final allocation of energy use in NH, we have to follow the flow of electricity into its final end use: that is the focus of this blog post.
 
Here is the NH Energy picture I have been working through in the last few posts. In the last post we looked at energy flows from the left column to the center one. This week we are going to focus on the energy flow from the center column to the rightmost one.



So let's start off by looking at the largest slice of the center column so we can determine what happens to all the energy that goes into the production of electricity. We note that 224 Trillion BTUs, or 55% of our total energy supply, goes into the production of electricity. The arrows radiating out from the electricity slice tell the following story:

Approximately two thirds of the energy that goes into the production of electricity is lost as waste heat during the energy production and transmission process. If you are not familiar with electricity production, this might be a rather startling fact. It indicates how inefficient transmission and especially the generation of electricity is when only 35% of the energy input ends up as useable electricity in our homes and businesses. This is a result of the physics of the electricity generation process, and since the advent of commercial scale electricity production, engineers and scientists have been working hard to improve conversion efficiencies. The first commercial electricity generating operation was established by Thomas Edison in New York in 1882. Edison's first operation converted less than 2.5% of the energy in coal to electricity. The average coal plant operating today has a conversion efficiency of ~28% and the latest generations of combined cycle coal power plants have conversion efficiencies of the order of 45 to 50%. We have indeed come a long way efficiency-wise, but we cannot escape the fact that electricity generation produces a lot of waste heat. Not only is energy lost in the generation process, but some of it dissipates during transmission where losses are typically of the order of a further 7%.

The other distribution arrows in this figure show us that 7% of the energy that into goes into electricity production ends up as electricity routed to our homes. A similar amount ends up in commercial operations and industrial usage accounts for 3%. Finally, and for me quite interestingly, a significant 17% ends up as electricity that is exported out of state.

To get a better view as to what happens to electricity after its production, I have sliced and diced the data a little differently in the figure below. I have subdivided the tall electricity slice into its two main components – electricity and waste – because I wanted to examine the allocation of generated electricity in the state. The subdivided column shows that the electricity generation slice is one third generated electricity and two thirds waste heat. Now, if you follow the arrows radiating out on the electricity only piece, you can see that, of the electricity generated in the state, 21% is used in our homes, 21% in our commercial operations, 9% is used to drive our factories and an impressive 51% is exported out of state into the New England Electricity Pool.

It is this exported pool of electricity that often gets politicians, ordinary folks and even less ordinary folks worked up into an absolute lather here in New Hampshire. It has been used at various times to justify the closing down of the Seabrook Nuclear power plant, our coal burning plants and even the Northern Pass project. In a future post I will weigh in on this debate but for the moment you should know that my viewpoint is a highly pragmatic one. I believe that as we continue our rather slow transition to renewable energy, we need to draw upon as many different energy sources as we can so that we are not trapped and reliant on one or two energy sources sometime in the future. Diversification in energy supply, just like picking investments, reduces future risk and my focus is on reducing risk and creating a sustainable future for my children.

It is crucial to note that even though we presently export 50% of the electricity produced in the State, this has not always been the case, and it might not be the case in the future. Prior to the Seabrook Nuclear plant, we were net importers of electricity. We are part of a regional and national pool and at this time we are in the good position to be making a positive contribution.


This final figure combines the allocation of the energy that goes into electricity production with the other energy flows we saw in my previous post. From this figure we learn the following:

  • In our homes 71% of our energy comes from fuels, largely fossil fuels, for direct heating applications. The remainder of the energy supplied to our homes is from electricity usage.
  • For our commercial businesses 58% comes from direct heating and 42% from electricity. The higher percentage of electricity use in our commercial operation is likely due to increased use in lighting for displays and air conditioning in the summer.
  • Our factories are more like our homes where 75% of energy use is from direct heating and 25% is from electricity.

Finally, if we examine the percentages in the leftmost column and working from the bottom up we learn that, of the 409 trillion BTU of energy supplied to the state, 36% of it is lost as waste heat during the generation and transmission of electricity, 9% leaves the state as exported electricity, 7% is used to power our factories, and 9% is used to keep our office buildings and stores lit up, warm and air conditioned. Our homes are responsible for 13% of NH's energy appetite and transportation uses up the remaining 26% of our energy supply.

So there you have it. After slogging through three detailed posts you should now have an understanding of NH's energy picture and a good idea of where our energy comes from, how it is used, where it ends up and how much is wasted as a result of electricity generation.

Before I ride off into the power line sunset shown on the background of my blog, some of you might be ready to point out that this picture is not quite complete: if I have shown how much energy is lost as waste heat during electricity generation, I should have done same for the energy used in transportation and that lost from our homes and businesses. I totally agree with you, but that brings in another level of analysis, more complications, more columns and spider webs of arrows and, I think, for the moment, we have all had enough of those. There is a better way to show this and that brings me to the topic of flow diagrams which I will be discussing in my next post.

Let me know if this rather lengthy explanation over the past few posts has helped you understand the statewide energy flows and, as always, I am interested in your opinion.

Until next time, remember to turn off those lights when you leave the room.

Mike Mooiman
Franklin Pierce University
1/13/2012