Showing posts with label New Hampshire Energy. Show all posts
Showing posts with label New Hampshire Energy. Show all posts

Tuesday, September 5, 2017

Solar Power in NH – Part 3 – Ranking NH’s Solar

This is my third installment dealing with solar power in NH. In the first two posts, I provided some basic concepts about solar power, as well as information about NH solar potential and the large solar farm in Peterborough. As I drive around New England, I see solar installations popping up everywhere, especially in Massachusetts and Vermont. Rhode Island recently passed new laws that will continue to support solar in a big way so I thought it would be useful to do a comparison between the various New England states to see how New Hampshire stacks up.
The first information I sought out was how much installed solar each state has. There are several sources for this information, which have different degrees of reliability, ease and cost of accessibility, and different bases for the rankings. Direct comparison of the various sources is complicated by the different ways of rating the power outputs of solar plants. As explained in my previous post, solar photovoltaic (PV) installations produce direct current (DC) electricity and the rating of solar PV operations is often given as the combined DC output capacity, in kilowatts (kW) or megawatts (MW) DC, of the panels under the standard test conditions of 1000 W/m2 irradiation and temperature of 25oC – conditions known as one peak sun (see an earlier post for an explanation of irradiation and the peak sun hour concept). To feed electricity into the grid, the DC electricity needs to be converted into alternating current (AC) through a device called an inverter. During this conversion, there are losses through the electrical system and wiring. These losses are typically of the order of 5 to 10%, so the peak AC output of a solar system, in in kW or MW AC, can vary from 90 to 95% of the DC rating. However, there are also performance losses due to dust on panels, degradation of the panels over time, and elevated temperatures. In my calculations, I typically assume that the peak output of AC electricity from a solar system is about 80% of its DC rating.
In searching for installed solar capacity information, the most useful I found was the 2016 data from ISO-NE, which is included in the table below, along with the 50 state ranking carried out by the Solar Energy Industries Association (SEIA). I have also included a chart from the ISO-NE Final 2017 Forecast that shows the growth in New England PV installations since December 2013. The ISO-NE data (reported in MWAC) shows that Massachusetts is clearly on top of the New England installed solar rankings, followed by Connecticut and Vermont. Massachusetts is also ranked #7 out of the 50 states in installed solar capacity. California, as one would expect, is ranked #1. In the 50-state ranking, NH is presently in 33rd position.



Source: ISO-NE

Even though Vermont’s installed solar capacity is a small fraction of that of Massachusetts, I was still impressed at how much solar they have installed, so I calculated the installed solar capacity on a per-person basis and generated the chart below. In this ranking, Vermont rises to the top, with installed solar capacity of 318 W AC per capita. To put this into perspective, this means that Vermont has installed the equivalent of more than one solar panel for each person in the state (modern solar panels have a DC rating of 300 W and an AC output rating of ~240 W (after losses)). This is a little lower than the California figure of ~370 WAC, but I’m still impressed.

 Source: ISO-NE and  Census.gov

In terms of installed solar, NH is very much at the back of the pack, but there are other solar ranking systems out there. I am a fan of the state rankings carried out by the folks at Solar Power Rocks. They order states on the basis of regulations, incentives, investment returns, and cost of electricity (among other factors that are supportive of solar power). In their ranking, which I have shared below, NH places fairly high, coming in at #10. The other New England states, MA, RI, VT and CT, also appear in the top 10, while Maine is found in 23rd position.
The specific scorecard for NH is reproduced below: it is clear that with a “B” grading, NH has a lot going for it in terms of support for solar power. The factors in NH’s favor include:
  • High electricity prices;
  • Net metering;
  • The Federal solar tax credit – presently 30% of the cost for installing a PV system;
  • Production credits through the sale of renewable energy credits;
  • State rebates on the costs for installing solar.
There has been a fair amount of news recently about the NH state rebates available from the Public Utilities Commission. The program is presently on hold due to its record demand and concerns about sufficient funding. Nevertheless, there is much in favor in terms of installing solar in NH, and we should be taking advantage of this. In my next posts, I will take a close look at how these factors play out in considering whether to install solar on your home in NH. So, until next time, remember to turn off the lights when you leave the room. 
Mike Mooiman
Franklin Pierce University
mooimanm@franklinpierce.edu

Click on this link to receive email notifications for Energy in New Hampshire updates

Wednesday, February 22, 2017

Man in the Mirror* - Why We Don’t Invest in Energy Efficiency

It’s strange: we view ourselves as rational creatures, but then we don’t do what we should, even when we know what the right thing to do is. That’s a mouthful, I know, but I have been thinking a lot about energy efficiency (EE) of late. We all know that EE is good for us and the planet, but the problem is that we often don’t make the investments. This divide between knowing that EE is the right thing but failing to take action is known as the energy efficiency gap.

It is important to understand the reasons for the separation between knowledge and action. We often read that we don’t need to make investments in energy infrastructure, such as power plants, natural gas pipelines, wind farms, or transmission lines; instead, we read that all we need to do is to make investments in energy efficiency. We are told that such investments would curtail our growing energy demand and we could make do with the existing supply. In principle, I agree wholeheartedly and endorse this idea, but the sad truth is that we don’t make the necessary EE investments. Instead, our energy consumption grows and we end up having to make the investments in energy infrastructure anyway. The fact of the matter is that we often fail at making decisions in our own best interest. This failure to act in favor of our long-term interest is at the heart of our problems with energy.

Consideration of, support for, and implementation of EE plans are very important parts of any state or national energy plan. The importance and benefits of EE, such as reduced energy demand, lower costs, and lower greenhouse gas emissions, have been long recognized: As I noted in a previous blog, EE can be considered as an energy source in its own right.  The  International Energy Agency (IEA) now refers to energy efficiency as the first fuel because the savings from avoided energy use are now greater than the supply of any single energy source (oil, electricity, or natural gas) in Australia, USA, and certain EU countries. EE is, in fact, considered an energy source in its own right. In other words, more can now be achieved by EE measures than by increasing the supply of a particular energy resource. Moreover, much of the potential from EE remains untapped.

We face two choices as our demand for energy increases: we either build new power plants or we become more efficient in our consumption to curtail our demand. It is not widely appreciated that EE is the lowest cost option when compared with installing new power production capacity. The consulting company, Lazard, carries out an interesting analysis every year,  in which they examine renewable and fossil-fuel electricity generation options and calculate the levelized cost of energy or LCOE. This parameter takes into account the initial cost of an operation, its electrical output, the annual cost of fuel, annual maintenance, and an interest cost (normally set by the minimum rate of return one would like to earn on a project, often equivalent to the bank loan interest rate to purchase the equipment). These costs are then evenly distributed over the life of the project to yield a single “levelized” cost for energy. The attraction of this approach is that it allows a side-by-side comparison of different projects and energy sources that have very different financial requirements and expense flows. For example, it allows comparison of a solar system with high capital but low operating costs with a diesel generator project that has low capital but high operating costs. LCOE provides a means for determining which project is better from a lifecycle energy cost point of view. In the figure below, I have rearranged the Lazard data, showing renewable technologies in green and fossil fuel options in blue. On an LCOE basis, it is clear that that EE (shown in red) is the lowest cost option, with an average value of 2.5 cents/kWh. By way of comparison, I noted in my last post that the EE numbers for NH through the NH EE Core program were of the order of 3.7 cents/kWh for EE investments.

Source: Lazard

So, if EE is so clearly the lowest cost option, why don’t we do more of it? Why is there this energy efficiency gap?

The biggest issue is that it requires long-term thinking and making big investments now to reap benefits far into the future. This is not something that we are good at. EE costs money and is not always popular, especially with politicians wrestling with the fallout of high energy prices. Here in NE, energy prices are already high and EE adds to these costs. The approach adopted by some is to kick the can down the road by saying No to EE investment and make high energy consumption a problem for future generations.

I have been wrestling with this this EE paradox: if we know EE is good for us, why don’t we do it? It is like exercise! We are bombarded with messages about the benefits of exercise and healthy lifestyles, but often we come home, crack open a beer, open a bag of Doritos, sit in front of the TV for the evening— and tell ourselves that we will start exercising tomorrow.

In my thinking about energy efficiency, I have taken a hard look at the man in the mirror* and my own actions in this regard. I write about and research energy matters, I teach energy efficiency classes to MBA students, and I write papers on energy efficiency, but I have not implemented all the EE measures in my life that I could have. Compared with most folks, my knowledge of these measures is much deeper, but I still don’t take all the action that I should. Clearly, I am still on the beer, Doritos, and TV train.  Why is this so and why I am standing on the other side of the energy efficiency gap? What accounts for this paradoxical behavior?



It turns out that this issue has been studied in a fair amount of depth by economists, but the challenge is that these studies are often shrouded in arcane language, economic theories, and complicated equations, which makes them difficult to understand. I wanted to share some of the thinking behind the reasons for the energy efficiency paradox, so I turned to one of my recently graduated students, Alexander Ziko, and asked him to explain, in non-economic language, the reasons for the EE gap.  Take it away, Alex.

This is Alex Ziko, a 2016 graduate from the Franklin Pierce University MBA in Energy and Sustainability Studies program. I have been studying energy matters with Prof. Mooiman for the past two years. Having graduated, I thought I was all done with energy assignments from Prof. Mooiman, but he posed an interesting question to me and, as I am interested in energy efficiency and behavioral economics, I decided to tackle the question as to why there is an energy efficiency gap.

As a brief introduction, I would describe myself as a native New Englander, recreationalist, and environmentalist living in the White Mountains of New Hampshire. I work as a data analyst for a small analytics software company; and spend my spare time reading and studying the intersection of economics, energy, and sustainability. This fall, when Prof. Mooiman posed to me an interesting question about the EE gap, he assumed I would balk at the opportunity of completing yet another assignment regarding energy economics – especially as this one would be on my own time. However, accepting Prof. Mooiman’s challenges always proves to be a personally enlightening experience. So let’s get comfortable as I attempt to turn the economically arcane into the intellectually engaging.

Why We Don’t Invest in Energy Efficiency When We Should

Increasing energy efficiency is a trend that Americans have been seeing for years. The idea of saving energy (and thus money) is a frequent topic on news broadcasts and daytime television; EE goods and services are given approving nods from consumers (think EnergyStar products and LED lighting); and when you crunch the numbers, EE investments almost always make long-term financial sense. However, consumers still act imprudently and opt not to make the investments –  once again proving that “rational economic actors” (an economist’s term for everyday people) aren’t always rational with their choices. Why? Why is there a gap between what is available to the consumer and what the consumer chooses to do – the so-called energy efficiency gap? The reasons why consumers choose not to adopt energy efficient options are complex and different for everyone. One cannot point to one specific area because there three main reasons for this energy efficiency paradox that can explain why, for an energy consumer, knowledge does not lead to action.

Modeling Flaws - The best decisions are made with good data – the world of EE is no different. Just as a bank would require accurate and convincing data before offering you a small business loan, a consumer looking to invest in EE hardware needs to be convinced of its short- and long-term value. Let’s use insulation as an example. Upgrading insulation has become a ubiquitous investment by homeowners as a way to save on energy (electricity, oil, natural gas, etc.). However, the savings available to a consumer depend greatly on: the state in which they live, the energy rates in that area, customer behavior, and the capacity to which the upgraded insulation would reduce heat losses. This puts a lot of pressure on the forecasting model used by firms that consult on and commission EE projects to provide an accurate forecast when proposing an energy project. Factors like the current income and cash flow (how much you make and spend each month) and budget allocations of the homeowner also need to be taken into account, along with an analysis of the opportunity cost associated with the project (opportunity cost can be thought of as the cost of the “next-best” option for a client). The homeowner’s opportunity cost for investing upfront cash for better insulation may present itself in the form of not being able to afford to take a family vacation this year or passing on orthodontic work for little Billy. In addition, one of the reasons for investment hesitation with energy investments is the concern that energy prices will not remain high enough to allow a return on a sizeable upfront investment. For example, in New England, the primary source of home heat is heating oil. In the past two years, heating oil prices have fallen. With opportunity costs in mind, and a relatively low market price for oil, consumers may not see sufficient benefits to warrant paying to upgrade the insulation in their home, especially in an economic climate of stagnant wages. Instead, they choose to keep the money in savings or perhaps spend it on that orthodontic work.

One overlooked and unaccounted for economic result that doesn’t always show up in an initial energy model is what is known as the rebound effect. This is the additional consumption of a product, or the additional emission of negative effects (like pollution), because you change your consumption habit due to your investment. Sound complicated? It makes sense if you think about our very human behavior. Let’s use the example of a hybrid vehicle. Perhaps you traded in your inefficient SUV for a new or used hybrid; heck, maybe you even acquired the car through a private sale and got a really good deal. However, with that new car, it is likely that some of your driving habits are going to change. Because you now buy less fuel, you might drive more than you did when you were more conscientious of every mile per gallon. Even though you are driving a more energy efficient vehicle, you undo some of the EE gains by driving more. Or, in the case of upgrading your insulation, you perhaps increase your thermostat setpoint by a few degrees because you don’t burn as much oil as before. These negative effects are seldom included in the calculation of EE gains, which could lead to their overstatement. When determining EE benefits, it is important to monitor energy consumption behavior afterwards to make sure that you really are achieving your forecasted savings.

Market Failures - Market failures sound complex, but they are actually very simple. When the supply of a resource is not matched by its demand, market failures are present. These can be found in many areas of the EE universe. Whenever a subsidy for an investment is given, or whenever pollution is emitted without accounting for its clean up, an imbalance in the true cost of production and the price of the product is created: this imbalance is a market failure. For example, subsidizing a homeowner’s EE investments is a market failure (albeit arguably a positive one) because the homeowner does not bear the full cost of the investment – they are subsidized by other ratepayers, thereby creating a market distortion. Then there are the indirect benefits that the neighbors benefit accrue from the EE investment, such as: improved resiliency of the energy-delivery systems because less energy has to be sourced, lower costs because fewer power plants have to be built, our resources last longer, less pollution and greenhouse gas emissions are reduced, local job creation, etc., as alluded to by Prof. Mooiman in his blog.  Sometimes, market failures can take the shape of incomplete information. Energy consumers don’t have the same information that is available to suppliers of EE products or service: there is a fear that the projected savings might not materialize and that perceived risk can be an obstacle in moving forward with an investment.

Another market failure occurs when multiple people are responsible for the same energy system: those individuals may not view the system in the same way. This can be found in apartment buildings where a landlord may not have an incentive to properly insulate and upgrade the building if the tenant is responsible for the heating bill. Whenever multiple people have the ability to change the consumption of energy, there is a possibility that the usage will not happen in an efficient manner. In economic speak, this is known as the principal/agent or split incentive problem. Anyone who has grown up in New England can attest to the paternal fallout that may happen if you touch the thermostat in the living room lest you decline to put on a sweater.

Other forms of market failures also fall within the realm of credit constraints.  EE investments normally require high upfront costs: lenders generally have a poor view of the potential return on these investments and can be reluctant to lend money for these projects.

Behavioral Failures - A very common explanation for the EE gap can be found in the way that people behave. I cannot stress enough that Economics is much, much more than the examination of dollars and cents; it’s an examination into how communities and individuals use their finite resources. Improved understanding of economic behavior has been aided by the field of behavioral economics, which looks at the differences in the ways that people, as rational beings making efficient economic choices, are predicted to act and how they actually behave in real life when they are presented with options. This is what makes behavioral economics a fascinating and worthy study, because it is just as much about psychology and philosophy as it is statistics and quantitative analysis. Behavioral reasons for an EE gap may be centered around personal beliefs, personal decision making, and personal preferences. For example, consider a homeowner who uses oil as a heating source. They may have a personal belief that the future price of heating oil will only go down in the future as less expensive forms of energy, such as those released by hydraulic fracking, become available; and therefore it is not financially worthwhile to invest in a solar hot water system. An example of a personal preference may be found in the decision to keep driving an inefficient vehicle rather than a hybrid vehicle, because the owner identifies more with the model of car they own – a personal identification that is worth more to them than potential fuel savings. Consumers may also be wary of the reality of energy savings, and are perturbed by the motives of a sales person looking to make a commission rather than the true effectiveness of potential energy savings that would result.

Other behavioral failures include: inattentiveness and salience, myopia, prospect theory, and bounded rationality. Inattentiveness addresses the fact that we are bombarded by information and have limited capacity to deal with it all and that we have to make choices regarding what we do pay attention to. As a result, doing the research (remember our definition of Economics as resource management, not just dollars and cents), contacting the vendor, and finding the money for an EE investment tends to be far down the list of what catches our attention. This is difficult because it requires more critical thinking and economic creativity than we usually ask of ourselves in our daily life. We also don’t pay attention to the long-term energy savings. Instead, we focus on the upfront cost of the investment – the feature that is most relevant (salient) to us at the time of the decision.  When buying a car, the upfront premium on a hybrid vehicle and the increased taxes can be more important to us than the long-term savings. We also tend to discount the importance of something like much higher fuel prices that might happen in the future.

Prospect theory suggests that we, as consumers, are more concerned about the possibility of loss than the prospect of long-term gains. We tend to weigh losses more heavily than gains. The spending of $1000 on EE has a greater emotional impact on us than $2000 of future gains.  In other words, we are concerned about our EE investment being a bad one and are risk-adverse to the possible gains. Future money is more abstract than the current balance on the bank account.

Bounded rationality is another behavioral economics explanation and explains that it is impossible to analyze and understand all information associated with a decision, especially a complex technical one. As a result, we resort to short cuts. For example, in buying a car, we simply might not have time to analyze all the data, so we might resort to a short cut, such as using Consumer Report ratings. Or perhaps we simply follow the lead of our neighbors and buy a similar car.  

As you can see, explaining why there is a slowness to adopt EE measures is not simple. There are many layered and nuanced economic reasons for why customers don’t install LED light bulbs, continue to use inefficient home appliances, drive inefficient vehicles, and delay upgrading home energy systems. Some of this reasoning lies in the information gap between EE suppliers and energy consumers, but a lot is wrapped up in the way that consumers view their budgets, the future benefits of changing their actions, and their preference to the way that they do things now, information overload, and other choices that draw them away from making EE investments. Getting people to make EE efficiency investments is not straightforward. Consultants and EE experts face significant barriers in helping residents and businesses see through these situations and getting them to make the right decision; while at the same time learning from their own forecasting errors and mastering a more accurate prediction of energy savings.

Thanks Alex. So, there we have an explanation as to why I can sometimes be such an EE slacker. It is a combination of too little information, and, at times, too much information, inattention, short-term thinking, other opportunities to spend my money, and more concern about spending money now rather than long-term energy savings. Overall, the point is that we are not always rational in our approach and it takes work to get humans to think in the long term, to do the right thing, and to make those EE investments.  As a result, depending on voluntary EE action is limited in its effectiveness. This is why Federal programs, such as appliance and fuel economy standards, or State programs, such as building codes or the Energy Efficiency Resource Standard (EERS) programs, are so important. They get us to make the right EE decisions by making EE the default option or by providing incentives such as subsidies for EE investments.

It has been noted by the International Energy Agency in their 2016 Energy Efficiency Market Report that policy is the key driver for EE improvements. These policies take one of five forms:
  1.    Mandatory standards, e.g., building energy codes;
  2.    Mandatory energy savings targets, such as those in the NH EERS program;
  3.    Information and labelling, e.g., Energy Star Appliances;
  4.    Financial incentives, such as the subsidies provided by the NH EERS program; and
  5.    Financial disincentives, e.g., consumption taxes, like fuel taxes.

With this powerful range of tools, our legislators have the ability to make a profound impact on our energy consumption, should they take a long view. Quite frankly, if EE policy is not used as a tool, our demand will continue to grow until the point that diminished energy resources and excessive energy prices will provide the incentive to curtail our energy usage. Escalating demand will also, by necessity, lead to increased supply: bringing in that increased supply—renewable or not—will have an impact and, one way or another, we will end up paying for it. It must be appreciated that every energy project, whether renewable, nuclear, or fossil-fuel based, has an impact on somebody somewhere. There is no free lunch when it comes to energy. The choice is a stark one: we can work to moderate our energy consumption through policy and voluntary action, or wait for increased demand, higher energy prices, and impacts on our society and environment to drive our actions. With EE, we have the ability to moderate, over the long term, our demand in a controllable and less drastic fashion.

I understand the dilemma faced by our elected representatives. They are concerned about high energy prices in New England and the negative impact that they have on local companies that need to remain competitive. It takes foresight and courage, especially when you are up for election, to support programs that may marginally increase energy costs, despite their enormous long-term positive energy usage impact. We and our elected representatives should take courage and lessons from the many local companies that do take action and make investments to improve their energy efficiency by utilizing EE programs like CORE and EERS, discussed in my last post. I suspect that a company can do more to control their energy use through EE actions than by waiting and lobbying for lower energy prices.

We are often reminded that NH has amongst the highest energy prices: there are states with rates 50% lower. This  is an outcome of the fact that we are in New England and have little in the way of cheap hydropower, wind, or fossil-fuel resources. We are a densely populated area with a lot of energy infrastructure and, in many respects, we are at the end of the energy pipeline. On top of this, we are closing down aging coal and nuclear power plants and are notoriously reluctant to deal with and commit to new generation or supply infrastructure. Our higher prices should not be a surprise and we will never be able to match those low electricity prices in other states. However, we can and should deal with the situation then by curtailing our energy use. We can put our Yankee ingenuity to work. We can take action, drop the thermostat temperature by a degree, put on a sweater, make those EE investments, and encourage our politicians to make a commitment to EE programs. Energy efficiency is indeed the first fuel and let’s encourage our politicians to support it.

In the meantime, think about your own actions with regard to energy efficiency. Like me, take a look at the man in the mirror* and ask yourself if there is more you can do to reduce your energy consumption—and then take action.  And, as usual, start with remembering to turn off the lights when you leave the room.

Mike Mooiman

Franklin Pierce University
mooimanm@franklinpierce.edu


(*Man in the Mirror: One of my favorite Michael Jackson tunes. From the album Bad released in 1987. Enjoy Man in the Mirror)


Friday, January 2, 2015

It’s Time to Move On* - Competitive Electricity Supply in New Hampshire

In my last few posts, I have been writing about the electrical utilities and their winter rates. In this post, I take a look at the competitive energy suppliers in New Hampshire.

Electricity consumers in NH have a choice. They can go out and pick their electricity supplier or they can simply leave it to their utility to source and supply their electricity under the so-called default electrical service rate (see Gonna Take You Higher post).The move to competitive electricity supply has gone through two waves. In 2006, five years after the onset of electricity deregulation in NH, there was a massive migration of commercial and industrial customers to competitive suppliers. In 2011, there was a second wave of migration, this time by retail customers. Right now, about 50% of the electricity supply in NH is from competitive suppliers. The table below shows data for overall competitive supply for the NH electrical utilities and some information for large commercial and residential customers. It is clear that competitive suppliers provide most of the electricity for large commercial customers. In the case of PSNH, this is a stunning 96%, which, as I have noted before, leaves the residential customers responsible for picking up most of the costs for PSNH’s generating assets.
There are three types of electricity providers in NH. There is the utility itself which the default supplier, and then there are competitive suppliers and aggregators. At last count, there were 25 competitive suppliers and 90(!) aggregators.

The competitive suppliers approved to offer electricity supply are listed on the NH Public Utilities Commission (PUC) website. Not all of these companies supply to residential customers: some specialize just in the larger commercial and industrial  customers. Of the 25 competitive suppliers, 16 supply to the residential market but not all suppliers are active in all utility service areas.

Suppliers actually have to source the electricity and work with the utility to get it delivered to your home. Aggregators adopt a different approach. They will do the shopping for you and will go out to competitive suppliers and find a good rate for you. Once they do this, and you agree to the terms, they will then switch you to the competitive supplier. Aggregators tend to specialize in specific markets, e.g. small commercial customers or geographic areas. 

The table below shows which suppliers are active in which electrical utility service areas.

Some of you may recall the drama caused last year by one of the competitive suppliers, Power New England (PNE) and its aggregator, Resident Power, when PNE was suspended by ISO-NE for cash-flow problems created by high electricity rates in the winter of 2013. With the suspension of PNE, about 7000 customers had to be transferred back to the default service of PSNH over a weekend.

There are some key points that everyone should know about competitive suppliers:

  • Competitive suppliers are not regulated. Their prices and terms are not subjected to the same scrutiny as those provided by the utilities through their default service rates.
  • Do your homework. Look at the rates and request the terms and conditions.
  • Competitive suppliers offer fixed and variable prices.
  • There can be costs for switching.
  • Competitive suppliers can shunt you back to the service utility at their discretion.
  • The utility is always there as a backstop, in case your competitive supplier cannot supply electricity or goes under.

The NH PUC provides helpful information on competitive suppliers, including a useful list of FAQs and, particularly, a valuable list of questions to ask suppliers.

One of the challenges we face as consumers is that sometimes there is simply too much choice. It is well known that, in the face of too much choice, we often pick the easiest option – which is usually the default option. How many of us really have the time to call those 16 competitive suppliers and the compare their rates and terms?

This is where information-aggregation tools, such as Kayak for airline prices, are so useful. In one simple search, you can look at most airline rates on one page. One would hope that a similar tool would be available for competitive electrical supply, but, unfortunately, similar tools for NH electricity shoppers are not as helpful.

ShopEnergyPlans.com is one such site, but only a limited number of suppliers post their rates on the website. Recent examination of the website showed only three vendors in the PSNH service area. I chatted to Andre Ramirez, one of the co-founders of ShopEnergyPlans.com, about this. Although he has contacted most of the NH suppliers, there is a reluctance for many suppliers to openly exhibit their rates on an aggregator website. On reflection, I think this is understandable, particularly for a price-sensitive commodity, such as electricity, where customer loyalty is very price-dependent. It is the lowest price that will command the most interest, so many vendors choose not to post when their prices are higher.

In my chat with Andre, I did learn of a new feature offered by ShopEnergyPlans called PlanTracker. This is a notification tool that sends out emails with recommendations for actions to take regarding your electricity supplier. Having entered Manchester as the zip code for my energy service provider, this morning I received an email recommending that I stay with PSNH for the time being. A list of their recent recommendations for New Hampshire and Massachusetts are tabulated below. I think PlanTracker is a useful service and is a great way to keep on top of changes.




Although I understand why vendors may not want to post their information on an information aggregation website, such as ShopEnergyPlans, I still wanted to know what rates these other vendors were offering, so I spent a morning visiting the websites of all competitive suppliers for residential electricity in the NH service areas and collected the information in the rather large table below. In the process, I was subjected to an overdose of photographs of outrageously illuminated homes or of happy families in warm (and uncluttered) homes, playing on the carpets or looking at their laptops or smart phones, as well as more short videos featuring cute cartoon characters than one person should watch.



The table shows all competitive suppliers servicing the four NH utilities. Orange indicates that the supplier has not registered to supply electricity in that particular service area. Yellow highlights indicate areas where the supplier has registered but is not yet offering service (as indicated by their websites).  The non-highlighted areas, of course, indicate that rates were available on the various websites and I present the lowest rates for particular services. Many of these vendors offer “green,” or renewable energy, options or a blend of renewable and fossil fuel options. I did not consider these, but simply looked for the lowest rates. Here is what I learned from this exercise of cutting through the overgrowth of website based electricity supply marketing in NH.
  • Many vendors offer fixed-period and variable options – variable electricity prices are not posted. It is probably a challenge to keep variable rates updated regularly and this is perhaps not a popular option.
  • For the smaller utilities (NHEC, Liberty, and Unitil), competitive vendors do not seem to have made headway in their service areas and limited choices are available.
  • PSNH has the most competitive suppliers offering prices.
  • There can be a wide range of prices offered by competitors in a service area.
  • Many of the competitive suppliers have cancellation fees associated with their fixed-term contracts, so if you want to jump early, you will end up with some additional costs.
  • Not all suppliers offer contracts across all service periods. Some just offer a vanilla option of a single rate for 12 months.
I am sure I may have been able to gather price information for the vendors with unlisted prices if I called each utility, but that would have taken up even more time. It also serves to make the point that, even though NH has competitive electricity supply, finding and comparing rates is a time-consuming task.  My overall assessment of competitive electricity supply in NH is that we still have a long way to go. I would have thought that competitive suppliers would be falling over themselves in the NH market, that more choices would have been available for residents, and that price information would be more accessible.  

In the deregulation process to date, the companies that have done well are the large competitive suppliers, such as Constellation and TransCanada, that have focused on the large industrial and commercial customers and have won a great deal of this business. The table below, based on Energy Information Agency 2012 data, show that these competitive suppliers are now the second- and fourth-largest electricity suppliers in NH.

These competitors have been very successful at drawing large users of electricity away from the utilities and there is now a slower picking away at residential customers by smaller competitors focused on this market. It always astounds me that more than 50% of PSNH electricity sales are going to competitive suppliers (see the first table in this post), leaving a smaller and smaller base of residential customers picking up the tab for those PSNH plants. Rough calculations show that, if the costs in PSNH’s recent filing are accurate and we assume that 60% of their costs are fixed, and if PSNH supplied electricity to all their customers, then their costs per kWh of electricity could be as much as 30% lower than their present default rate.  

What do we take from this?  This half-hearted and incomplete process of electricity deregulation in NH has hurt PSNH residential rate payers. We understand that it is complicated but the process needs to be completed. It is time to move forward and get the job done. Either pull the plug on deregulation or get it done.

In the words of that great rock and roll sage, Tom Petty*

It’s time to move on, it’s time to get going.
And what lies ahead I have no way of knowing
but under my feet, the grass is growing.
It’s time to move on, it’s time to get going.

Until next time, remember to turn off the lights when you leave the room.
Mike Mooiman
Franklin Pierce University
mooimanm@franklinpierce.edu


(*It’s Time to Move On – A tune from one of my favorite Tom Petty’s albums, Wildflowers. Here is Petty performing the tune live in 1994. It’s Time To Move On)

Tuesday, June 24, 2014

The Price* - Natural Gas Prices in New Hampshire

I have been away for a while working on energy projects, keeping my energy students busy, and attending conferences. I also had the good fortune to attend a week-long course on the wholesale electricity market in New England that was arranged by ISO-NE, the organization that runs the local electrical grid. I learned a great deal and came away very impressed with the marvelous machine that organizes the electricity market and supply here in New England. I am planning to write about this in a future blog. Our electricity market in New England has become highly dependent on natural gas supply and pricing so I have been keeping an eye on natural gas prices, trying to understand their movement and what drives them.  As is common in the energy world, “price” means very different things to different people and, when doing research on natural gas prices, it can become rather involved rather quickly.

As it turns out, there are three natural gas prices of interest to us here in NH. The first, and on which all the other prices are based, is the basic commodity price for natural gas. This is most commonly referred to as the Henry Hub price and it provides the basis for much of natural gas pricing throughout the US. The Henry Hub is a location in Louisiana where several gas lines converge and radiate out across the US. Although not all the natural gas in the US is routed through the Henry Hub, it is nevertheless the agreed delivery and receiving point for traders and dealers in the wholesale gas market. It is likely that when you hear discussion about natural gas prices or read about them in the financial press, it is the Henry Hub prices that are being discussed.

The challenge here in New England is that we are a long way from Louisiana and other natural gas sources and gas has to be routed through many hundreds of miles of pipelines and multiple compressor stations to get it to us and there is, of course, a cost associated with its transportation. This is reflected in the second of the natural gas prices, which is referred to as the City Gate price. This is the price at which the natural gas is transferred from an interstate pipeline into the distribution network of a local natural gas distribution company, such as Liberty Utilities, the largest of the New Hampshire natural gas companies. The City Gate price is the local wholesale price and reflects the price of natural gas plus the transportation charges involved in getting it from some location to the city gate. The difference between the Henry Hub price and the city gate price is known in natural gas geekspeak as the “basis differential”.  This basis differential does fluctuate, especially in the cold winter months when we are using a lot of natural gas for heating and generating electricity and there is limited natural gas pipeline capacity to get the gas to us.  Because of heavy demand in the winter for pipeline capacity, the basis differential rises.  

Here in New England there are several city gates: the most important for New Hampshire is the Dracut City Gate, where Liberty Utilities picks up natural gas from the Tennessee Gas Pipeline (see End of the Line for a discussion of the local natural gas pipelines of interest to us here in NH). The most commonly discussed and quoted city gate price in New England is that of the Algonquin City Gate in Boston where the Boston gas distribution company, Nstar, taps into the end of the Algonquin Gas Transmission pipeline which brings gas into Boston. Even though there are price variations between the various local city gates, the Alqonquin city gate price is a useful proxy for the local New England wholesale price of natural gas. The figure below shows the average monthly Henry Hub prices and the Boston City Gate prices since 2000. A few key points are noted from this chart.

  • Natural gas prices have fluctuated significantly over the past 13 years, with big spikes in 2005 and 2008.
  • After the run up in natural prices in 2008, natural gas fracking kicked into high gear, supply increased dramatically, and the Henry Hub price dropped to about $ 2/MMBtu. Prices have steadily increased since then and are now of the order of $ 4/MMBtu.
  •  The Algonquin City Gate price is always higher than the Henry Hub price, reflecting the cost of transporting natural gas to New England.
  • The difference between the City Gate and Henry Hub prices, the basis differential, varies significantly over time, with spikes in the high-demand winter months and then dropping off to lower levels in the summer months.
  • The average monthly basis differential over this period was $ 2.93/MMBtu: during some periods it rose as high as $ 6/MMBtu on a monthly basis.



 Data Source: EIA
But now it starts to get complicated. On top of the different city gates locations, there are different prices at the city gates.  There is the spot price, which is the price paid for the purchase of natural gas to be delivered the following day, and then there is the bid week price, which is the price paid for the purchase of gas for the upcoming month.  The term “bid week” comes from companies bidding for next month’s gas during the last week of the present month. The Energy Information Agency (EIA) recently published an interesting chart that compares the bid week and spot prices at Algonquin City Gate in Boston.



Source: EIA
Important to note is that the bid week prices had been reasonably steady, moving between $ 5 to $ 10/MMBtu, since the winter of 2011: however, this past winter these prices increased almost sevenfold to about $ 35/MMBtu. More noticeable are the wild swings in the spot prices this past winter, when they rose as high as $ 80/MMBtu! Those high spot prices had profound effects on electricity prices on those days. For the most part, the local natural gas distribution companies do not purchase large amounts of natural gas on the spot market, but instead use a variety of tools to protect their customers from these large fluctuations.

These include buying natural gas throughout the lower demand summer months, when prices are generally lower, and storing the gas in underground storage caverns in other parts of the country. The natural gas utilities also have some limited local above-ground storage for compressed natural gas. Some local distribution companies (LDCs) also store liquefied propane gas  on-hand to mitigate any short term natural gas shortages.

Besides buying cheap gas in the summer and storing it, the LDCs also use various hedging techniques to protect consumers from wild price fluctuations. Hedging is an interesting and an extraordinary useful financial tool that many organizations use to protect themselves and their customers from commodity price variations. Let’s consider the hedging approaches that an LDC might use to protect their customers from fluctuations in natural gas prices, especially in the cold winter months. There are two main approaches.

The first is the purchase of a certain amount of natural gas for delivery sometime in the future, known as a forward contract. To do this well, the LDC needs to forecast how much gas they will purchase in the cold winter months when there are pipeline constraints and prices climb. The challenge is knowing how much gas to purchase: if they purchase too much, they have to sell the extra; if they purchase too little, they will then be compelled to purchase their shortfall on the spot market which could be very expensive. The amount of natural gas required is very dependent on the winter temperatures and we are all aware of the challenges associated with long-term forecasting of weather conditions. Moreover, there is also a cost associated with locking in a price today for a natural gas that will only be delivered in the future, so invariably  the forward price is higher than today’s spot price.

Another way to hedge future natural gas purchases is to buy and sell financial instruments whose value rises and falls with that of the underlying commodity. These instruments include financial derivatives, such as futures and options. (They are called derivatives because their value rises and falls with that of the commodity from which they are derived.) Consider, for example, if I was a NH LDC and I wanted to lock in a price, say $ 7/MMBtu, for a certain amount of a natural gas price to be delivered in December. Because I am looking to purchase natural gas in the future, I will sell today an equivalent natural gas futures contract today which obligates me to deliver natural gas in December at $ 7/MMBtu. So if we get to December and the spot price of natural gas in December is $ 10/MMBtu I would be paying $ 3/MMBtu more than I wanted to pay in July. However, the value of the futures contract I sold in July to deliver natural gas at $7/MMBtu would have dropped by ~$ 3/MMBtu, and  I can now purchase it back at a lower price. The overall result is that I would have lost money on the rise in spot price of the natural gas but I made money by selling the financial derivative, the futures contract,  high and buying it back low . The money lost on the increase in natural gas price should closely match the money made on the sale and then the repurchase of the derivative, so I should be essentially flat in terms of my price exposure. In other words I am hedged.

Should the opposite happen and the price of natural gas falls between now and December, I would make money because I would be buying the commodity at a lower price but I would lose an equivalent amount of money on the derivative which has risen in price. Again my exposure is flat – and again I am hedged. Because these hedging transactions are a form of insurance, there is a cost, like the cost of a forward contract, associated with purchasing this insurance. NH natural gas ratepayers pay for this insurance through their natural gas rate.  It is important to note that hedging programs do not lower the cost of natural gas - they just serve to lock in prices for future purchases and partially protect rate payers from spiking natural gas prices.

All of this is important because Liberty Utilities, the largest NH natural gas LDC, has recently submitted a proposal to the NH Public Utilities Commission (PUC) to move away from hedging natural gas prices through financial instruments such as options, to simpler forward contracts that involve the purchase of a fixed amount of gas for a specified price in the winter months. The reason for this change is that the older financial derivative hedging program was based on the Henry Hub price where price volatility is now a lot lower (see the first graph). However, these hedging programs did not protect rate payers from volatility in the basis differential, which can be enormous during the winter months.  The newly proposed forward contract program involves delivery of natural gas to the City Gate and therefore includes the basis differential. From my perspective, this appears to be a sound change in the hedging program. However, I did note that between these forward purchase contracts and the use of local and underground storage, Liberty Utilities believes it would be locking in the price of about 57% of natural gas used in the three cold winter months of December, January, and February. This percentage seems low and I would have thought that the natural gas utilities might have done a better job of hedging a larger percentage of their forecasted use. This could be an interesting topic for a future blog.

Returning to City Gate natural gas prices, remember that City Gate is a wholesale price and it is not what we pay for natural gas delivered to our homes: we pay the retail rate, which is substantially higher than the wholesale price.

For NH residents, natural gas is a regulated commodity so prices are set by the NH PUC based on information submitted by the LDCs. Commercial and industrial natural gas customers are able to purchase natural gas from competitive suppliers but this option is not available for natural gas supplied to NH residents. Price setting for natural gas is done twice per year so there are summer and winter prices. However, the utilities have the ability to increase their prices up or down from their approved summer or winter prices, depending on demand and natural gas prices. These interim prices changes cannot be more than 25% of the approved winter or summer rates.

As I noted in Jumping Jack Gas, there are three main components to NH natural gas bills: for clarification, I have included an example of a residential natural gas bill below. There is: 1) a minimum service or meter charge; 2) a distribution charge; and 3) a fuel charge. The minimum service and distribution charges cover the cost of distribution of the natural gas by the local distribution company. As a regulated utility, the LDC can recover all costs associated with distribution as well as earn a return on the capital they have invested into the distribution pipeline infrastructure. On the other hand, the LDC cannot earn a return on the natural gas they supply. They can only pass on the costs associated with the gas they purchase on a dollar-for-dollar basis. These include the wholesale price of the natural gas (the City Gate price), any associated delivery and pipeline charges, and the costs associated with any program aimed at buffering customers from natural gas price fluctuations. These include the costs of hedging and storage programs.



So what are the utilities charging for natural gas once all the costs are factored in? Well, that depends on what utility you are talking about (see Pipeline for a discussion of the two NH natural gas LDCs). The two natural gas distribution companies operating in New Hampshire each have different cost and overhead structures so their rates are somewhat different, as I show in the table below and which compares recent summer and winter rates. The largest of the two, Liberty Utilities, has lower costs, most likely because they have a larger customer base over which to distribute their fixed costs. The distribution costs for Liberty are of the order of $ 3/MMBtu, whereas those for Unitil are almost double that: if you are living in a Unitil service area, you are bearing the brunt of their smaller customer base and higher costs. (Note that natural gas rates for customers are normally quoted as $/therm but I have converted them to $/MMBtu by simply multiplying by 10. See Jumping Jack Gas  for natural gas units and conversion factors.)
  


When we reflect on all these different prices, it is clear that when we discuss natural gas prices in NH we should always start with the question; “What natural gas price are we talking about?” This discussion has shown that there are three key prices: (1) the Henry Hub price, which is the commodity price for natural gas in the US markets; (2) the City Gate price, which is the local wholesale price and which reflects the costs of transporting the natural gas to New England. The City Gate price is, on average, about $ 3/MMBtu higher than the wholesale price but in the cold winter months this price differential can rocket up. (3) Finally, the retail price is what NH residents pay to get natural gas delivered to their homes. This reflects the wholesale cost of gas plus costs associated with gas storage and hedging programs to buffer residents from big swings in prices. The retail cost also includes costs associated with the distribution the natural gas through the LDC distribution network. These distribution costs are of the order of $ 3/MMBtu for Liberty Utilities and $ 6/MMBtu for Unitil.

I trust that I have been able to guide you through the maze of natural gas pricing and that you have a better appreciation of the challenges and complications faced by the NH regulators and LDC as they work to set prices and protect NH natural gas customers from wild swings in natural gas prices. There is always a price to be paid for such programs, but my assessment is that the price* appears to be a fair one.

Until next time, turn up the temperature on your air conditioner by a degree or two and remember to turn off the lights when you leave the room.

Mike Mooiman
Franklin Pierce University

(*The Price – A great tune by The Steeldrivers. Kinda sorta bluegrass music but it does rock. These guys are out of Nashville and received several Grammy nominations a few years ago for Best Bluegrass Album and Best Country Performance by a Duo or Group. Enjoy The Price)